Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396905

RESUMO

Chronic rhinosinusitis (CRS) is a multifactorial infection of the nasal cavity and sinuses. In this study, nasal swabs from control donors (N = 128) and patients with CRS (N = 246) were analysed. Culture methods and metagenomics revealed no obvious differences in the composition of the bacterial communities between the two groups. However, at the functional level, several metabolic pathways were significantly enriched in the CRS group compared to the control group. Pathways such as carbohydrate transport metabolism, ATP synthesis, cofactors and vitamins, photosynthesis and transcription were highly enriched in CRS. In contrast, pathways related to lipid metabolism were more representative in the control microbiome. As S. aureus is one of the main species found in the nasal cavity, staphylococcal isolates from control and CRS samples were analysed by microarray and functional assays. Although no significant genetic differences were detected by microarray, S. aureus from CRS induced less cytotoxicity to lung cells and lower rates of glycolysis in host cells than control isolates. These results suggest the differential modulation of staphylococcal virulence by the environment created by other microorganisms and their interactions with host cells in control and CRS samples. These changes were reflected in the differential expression of cytokines and in the expression of Agr, the most important quorum-sensing regulator of virulence in S. aureus. In addition, the CRS isolates remained stable in their cytotoxicity, whereas the cytotoxic activity of S. aureus isolated from control subjects decreased over time during in vitro passage. These results suggest that host factors influence the virulence of S. aureus and promote its adaptation to the nasal environment during CRS.


Assuntos
Seios Paranasais , Rinite , 60523 , Sinusite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Adaptação ao Hospedeiro , Sinusite/microbiologia , Infecções Estafilocócicas/microbiologia , Doença Crônica , Rinite/microbiologia
2.
Front Plant Sci ; 14: 1217771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645466

RESUMO

The bacterial elicitor flagellin induces a battery of immune responses in plants. However, the rates and intensities by which metabolically-related defenses develop upon flagellin-sensing are comparatively moderate. We report here that the systemic acquired resistance (SAR) inducer N-hydroxypipecolic acid (NHP) primes Arabidopsis thaliana plants for strongly enhanced metabolic and transcriptional responses to treatment by flg22, an elicitor-active peptide fragment of flagellin. While NHP powerfully activated priming of the flg22-induced accumulation of the phytoalexin camalexin, biosynthesis of the stress hormone salicylic acid (SA), generation of the NHP biosynthetic precursor pipecolic acid (Pip), and accumulation of the stress-inducible lipids γ-tocopherol and stigmasterol, it more modestly primed for the flg22-triggered generation of aromatic and branched-chain amino acids, and expression of FLG22-INDUCED RECEPTOR-KINASE1. The characterization of the biochemical and immune phenotypes of a set of different Arabidopsis single and double mutants impaired in NHP and/or SA biosynthesis indicates that, during earlier phases of the basal immune response of naïve plants to Pseudomonas syringae infection, NHP and SA mutually promote their biosynthesis and additively enhance camalexin formation, while SA prevents extraordinarily high NHP levels in later interaction periods. Moreover, SA and NHP additively contribute to Arabidopsis basal immunity to bacterial and oomycete infection, as well as to the flagellin-induced acquired resistance response that is locally observed in plant tissue exposed to exogenous flg22. Our data reveal mechanistic similarities and differences between the activation modes of flagellin-triggered acquired resistance in local tissue and the SAR state that is systemically induced in plants upon pathogen attack. They also corroborate that the NHP precursor Pip has no independent immune-related activity.

3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142767

RESUMO

The alarmin interleukin-33 (IL-33) is released upon cell stress and damage in peripheral tissues. The receptor for IL-33 is the Toll/Interleukin-1 receptor (TIR)-family member T1/ST2 (the IL-33R), which is highly and constitutively expressed on MCs. The sensing of IL-33 by MCs induces the MyD88-TAK1-IKK2-dependent activation of p65/RelA and MAP-kinases, which mediate the production of pro-inflammatory cytokines and amplify FcεRI-mediated MC-effector functions and the resulting allergic reactions. Therefore, the investigation of IL-33-induced signaling is of interest for developing therapeutic interventions effective against allergic reactions. Importantly, beside the release of IL-33, heat shock proteins (HSPs) are upregulated during allergic reactions. This maintains the biological functions of signaling molecules and/or cytokines but unfortunately also strengthens the severity of inflammatory reactions. Here, we demonstrate that HSP90 does not support the IL-33-induced and MyD88-TAK1-IKK2-dependent activation of p65/RelA and of mitogen-activated protein (MAP)-kinases. We found that HSP90 acts downstream of these signaling pathways, mediates the stability of produced cytokine mRNAs, and therefore facilitates the resulting cytokine production. These data show that IL-33 enables MCs to perform an effective cytokine production by the upregulation of HSP90. Consequently, HSP90 might be an attractive therapeutic target for blocking IL-33-mediated inflammatory reactions.


Assuntos
Hipersensibilidade , Mastócitos , Alarminas , Citocinas , Proteínas de Choque Térmico HSP90 , Humanos , Inflamação , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Proteínas Quinases Ativadas por Mitógeno , Mitógenos , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1
4.
Biomedicines ; 10(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740371

RESUMO

Osteoarthritis (OA) alters chondrocyte metabolism and mitochondrial biology. We explored whether OA and non-OA chondrocytes show persistent differences in metabolism and mitochondrial function and different responsiveness to cytokines and cAMP modulators. Hip chondrocytes from patients with OA or femoral neck fracture (non-OA) were stimulated with IL-1ß, TNF, forskolin and opioid peptides. Mediators released from chondrocytes were measured, and mitochondrial functions and glycolysis were determined (Seahorse Analyzer). Unstimulated OA chondrocytes exhibited significantly higher release of IL-6, PGE2 and MMP1 and lower production of glycosaminoglycan than non-OA chondrocytes. Oxygen consumption rates (OCR) and mitochondrial ATP production were comparable in unstimulated non-OA and OA chondrocytes, although the non-mitochondrial OCR was higher in OA chondrocytes. Compared to OA chondrocytes, non-OA chondrocytes showed stronger responses to IL-1ß/TNF stimulation, consisting of a larger decrease in mitochondrial ATP production and larger increases in non-mitochondrial OCR and NO production. Enhancement of cAMP by forskolin prevented IL-1ß-induced mitochondrial dysfunction in OA chondrocytes but not in non-OA chondrocytes. Endogenous opioids, present in OA joints, influenced neither cytokine-induced mitochondrial dysfunction nor NO upregulation. Glycolysis was not different in non-OA and OA chondrocytes, independent of stimulation. OA induces persistent metabolic alterations, but the results suggest upregulation of cellular mechanisms protecting mitochondrial function in OA.

5.
Arthritis Res Ther ; 23(1): 222, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429153

RESUMO

BACKGROUND: The incidence of rheumatoid arthritis is correlated with age. In this study, we analyzed the association of the incidence and severity of glucose-6-phosphate isomerase (G6PI)-induced arthritis with age in two different mouse strains. METHODS: Young and very old mice from two different arthritis-susceptible wild-type mouse strains were analyzed after a single subcutaneous injection of G6PI s.c. The metabolism and the function of synoviocytes were analyzed in vitro, the production of bioactive lipid mediators by myeloid cells and synoviocytes was assessed in vitro and ex vivo by UPLC-MS-MS, and flow cytometry was used to verify age-related changes of immune cell composition and function. RESULTS: While the severity of arthritis was independent from age, the onset was delayed in old mice. Old mice showed common signs of immune aging like thymic atrophy associated with decreased CD4+ effector T cell numbers. Despite its decrease, the effector T helper (Th) cell compartment in old mice was reactive and functionally intact, and their Tregs exhibited unaltered suppressive capacities. In homeostasis, macrophages and synoviocytes from old mice produced higher amounts of pro-inflammatory cyclooxygenase (COX)-derived products. However, this functional difference did not remain upon challenge in vitro nor upon arthritis reactions ex vivo. CONCLUSION: While old mice show a higher baseline of inflammatory functions, this does not result in increased reaction towards self-antigens in arthritis-susceptible mouse strains. Together, our data from two different mouse strains show that the susceptibility for G6PI-induced arthritis is not age-dependent.


Assuntos
Artrite Experimental , Glucose-6-Fosfato Isomerase , Envelhecimento , Animais , Artrite Experimental/genética , Cromatografia Líquida , Glucose-6-Fosfato Isomerase/genética , Imunização , Incidência , Camundongos , Espectrometria de Massas em Tandem
6.
Nat Commun ; 12(1): 3624, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131132

RESUMO

The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Artrite/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Artrite/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Caderinas/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Proteínas de Homeodomínio , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos , beta Catenina/metabolismo
7.
Int J Mol Sci ; 22(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804447

RESUMO

Interleukin (IL)-1ß is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1ß-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1ß in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2, MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1ß significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1ß-induced NO release and mitochondrial dysfunction but not IL-1ß-induced release of IL-6, PGE2, and MMP3. Enhancement of cAMP by forskolin reduced IL-1ß-induced NO release and prevented IL-1ß-induced mitochondrial impairment. Activation of AMPK increased IL-1ß-induced NO production and the negative impact of IL-1ß on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1ß-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1ß-induced NO release and mitochondrial dysfunction.


Assuntos
Condrócitos/efeitos dos fármacos , Inflamação/prevenção & controle , Interleucina-1beta/farmacologia , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/metabolismo , Osteoartrite do Joelho/prevenção & controle , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia
8.
Nat Microbiol ; 6(5): 643-657, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33753919

RESUMO

Vaginal candidiasis is an extremely common disease predominantly caused by four phylogenetically diverse species: Candida albicans; Candida glabrata; Candida parapsilosis; and Candida tropicalis. Using a time course infection model of vaginal epithelial cells and dual RNA sequencing, we show that these species exhibit distinct pathogenicity patterns, which are defined by highly species-specific transcriptional profiles during infection of vaginal epithelial cells. In contrast, host cells exhibit a homogeneous response to all species at the early stages of infection, which is characterized by sublethal mitochondrial signalling inducing a protective type I interferon response. At the later stages, the transcriptional response of the host diverges in a species-dependent manner. This divergence is primarily driven by the extent of epithelial damage elicited by species-specific mechanisms, such as secretion of the toxin candidalysin by C. albicans. Our results uncover a dynamic, biphasic response of vaginal epithelial cells to Candida species, which is characterized by protective mitochondria-associated type I interferon signalling and a species-specific damage-driven response.


Assuntos
Candida/genética , Candidíase Vulvovaginal/microbiologia , Células Epiteliais/imunologia , Interferon Tipo I/imunologia , Mitocôndrias/imunologia , Candida/imunologia , Candida/isolamento & purificação , Candida/patogenicidade , Candidíase Vulvovaginal/genética , Candidíase Vulvovaginal/imunologia , Células Epiteliais/microbiologia , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Interferon Tipo I/genética , Mitocôndrias/genética , Especificidade da Espécie , Vagina/imunologia , Vagina/microbiologia , Virulência
9.
Immunology ; 163(1): 86-97, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427298

RESUMO

IL-33 is a member of the IL-1 family. By binding to its receptor ST2 (IL-33R) on mast cells, IL-33 induces the MyD88-dependent activation of the TAK1-IKK2 signalling module resulting in activation of the MAP kinases p38, JNK1/2 and ERK1/2, and of NFκB. Depending on the kinases activated in these pathways, the IL-33-induced signalling is essential for production of IL-6 or IL-2. This was shown to control the dichotomy between RORγt+ and Helios+ Tregs , respectively. SCF, the ligand of c-Kit (CD117), can enhance these effects. Here, we show that IL-3, another growth factor for mast cells, is essential for the expression of ICOS-L on BMMCs, and costimulation with IL-3 potentiated the IL-33-induced IL-6 production similar to SCF. In contrast to the enhanced IL-2 production by SCF-induced modulation of the IL-33 signalling, IL-3 blocked the production of IL-2. Consequently, IL-3 shifted the IL-33-induced Treg dichotomy towards RORγt+ Tregs at the expense of RORγt- Helios+ Tregs . However, ICOS-L expression was downregulated by IL-33. In line with that, ICOS-L did not play any important role in the Treg modulation by IL-3/IL-33-activated mast cells. These findings demonstrate that different from the mast cell growth factor SCF, IL-3 can alter the IL-33-induced and mast cell-dependent regulation of Treg subpopulations by modulating mast cell-derived cytokine profiles.


Assuntos
Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Interleucina-33/farmacologia , Interleucina-3/farmacologia , Interleucina-6/metabolismo , Mastócitos/efeitos dos fármacos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
10.
J Orthop Res ; 38(3): 653-662, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608492

RESUMO

One possible approach to treat osteoarthritis (OA) is to counteract cartilage degeneration with anabolic compounds that stimulate chondrocyte proliferation and/or extracellular matrix (ECM) production. Several molecules including sprifermin (recombinant human fibroblast growth factor [FGF18]), insulin-like growth factor-1 [IGF1] and -2 [IGF2], C-type natriuretic peptide [CNP], and bone metamorphic protein 7 [BMP7] have been shown to have these characteristics both in vitro and in vivo. However, it is not known how these molecules compare each other regarding their effect on phenotype and stimulation of ECM production in primary chondrocytes. The effects of sprifermin, IGF1, IGF2, CNP, and BMP7 were evaluated on bovine articular chondrocytes, first in monolayer to determine their effective concentrations, and then in three-dimensional (3D) culture at concentrations of 100 ng/ml for sprifermin; 300 ng/ml for IGF1, IGF2, and BMP7; and 10 nM for CNP. In 3D culture, the effects of a permanent exposure or a cyclic exposure consisting of 24 h incubation per week with the compounds were evaluated. All growth factors increased ECM production and cell proliferation to a similar extent but CNP had almost no effect on bovine chondrocytes. Sprifermin was more effective with cyclic exposure, IGF1, and IGF2 with permanent exposure, and BMP7 showed similar results with both exposures. Regarding the cell phenotype, sprifermin appeared to be the only compound favoring the chondrocyte phenotype; it decreased type I collagen expression and had no hypertrophic effect. Together, these results confirmed that sprifermin is a promising disease-modifying OA drug. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:653-662, 2020.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Condrócitos/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Peptídeo Natriurético Tipo C/farmacologia , Animais , Cartilagem Articular/citologia , Bovinos , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Humanos , Imageamento Tridimensional , Osteoartrite do Joelho , Fenótipo
11.
Nat Metab ; 1(2): 236-250, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31620676

RESUMO

Closed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical-vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% arterial and 59% venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the CCS in long bones and may represent an important route for immune cell export from the BM.


Assuntos
Osso e Ossos/irrigação sanguínea , Capilares/fisiologia , Microcirculação , Fluxo Sanguíneo Regional , Animais , Medula Óssea/irrigação sanguínea , Humanos , Camundongos , Camundongos Endogâmicos DBA
12.
Arthritis Rheumatol ; 71(12): 2016-2026, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31332965

RESUMO

OBJECTIVE: Arthritis is often characterized by inflammation and bone destruction. This study was undertaken to investigate the contribution of inflammation and bone destruction to pain. METHODS: Inflammation, bone resorption, pain-related behaviors, and molecular markers (activating transcription factor 3 [ATF-3], p-CREB, and transient receptor potential vanilloid channel 1) in sensory neurons were measured in murine glucose-6-phosphate isomerase (G6PI)-induced arthritis, a model of rheumatoid arthritis. Depletion of Treg cells before immunization changed self-limiting arthritis into nonremitting arthritis with pronounced bone destruction. Zoledronic acid (ZA) was administered to reduce bone resorption. RESULTS: Compared to nondepleted mice, Treg cell-depleted mice exhibited arthritis with more severe bone destruction and higher guarding scores (P < 0.05; n = 10 mice per group) as well as more persistent thermal hyperalgesia (P < 0.05), but displayed similar mechanical hyperalgesia at the hindpaws (n = 18-26 mice per group). These pain-related behaviors, as well as an up-regulation of the neuronal injury marker ATF-3 in sensory neurons (studied in 39 mice), appeared before the clinical score (inflammation) became positive and persisted in Treg cell-depleted and nondepleted mice. In the late stage of arthritis, Treg cell-depleted mice treated with ZA showed less bone resorption (<50%; P < 0.01) and less thermal hyperalgesia (P < 0.01) than Treg cell-depleted mice without ZA treatment (n = 15 mice per group), but ZA treatment did not reduce the clinical score and local mechanical hyperalgesia. CONCLUSION: Pain-related behaviors precede and outlast self-limiting arthritis. In nonremitting arthritis with enhanced bone destruction, mainly local thermal, but not local mechanical, hyperalgesia was aggravated. The up-regulation of ATF-3 indicates an early and persisting affection of sensory neurons by G6PI-induced arthritis.


Assuntos
Artrite Experimental/fisiopatologia , Artrite Reumatoide/fisiopatologia , Reabsorção Óssea/fisiopatologia , Dor/imunologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/imunologia , Reabsorção Óssea/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glucose-6-Fosfato Isomerase , Membro Posterior/fisiopatologia , Hiperalgesia/imunologia , Hiperalgesia/fisiopatologia , Inflamação , Camundongos , Linfócitos T Reguladores/imunologia , Canais de Cátion TRPV/metabolismo , Ácido Zoledrônico/administração & dosagem
13.
BMC Biomed Eng ; 1: 16, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32002516

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are widely used in clinical trials for bone repair and regeneration. Despite previous evidence showing a prominent osteogenic potential of 2D cultured CD271 enriched MSCs, the osteogenic potential of CD271 enriched cells cultured on 3D scaffold is unknown. Apatite-wollastonite glass ceramic (A-W) is an osteoconductive biomaterial shown to be compatible with MSCs. This is the first study comparing the attachment, growth kinetics, and osteogenic potential of two MSC populations, namely heterogeneous plastic adherence MSCs (PA-MSCs) and CD271-enriched MSCs (CD271-MSCs), when cultured on A-W 3D scaffold. RESULTS: The paired MSC populations were assessed for their attachment, growth kinetics and ALP activity using confocal and scanning electron microscopy and the quantifications of DNA contents and p-nitrophenyl (pNP) production respectively. While the PA-MSCs and CD271-MSCs had similar expansion and tri-lineage differentiation capacity during standard 2D culture, they showed different proliferation kinetics when seeded on the A-W scaffolds. PA-MSCs displayed a well-spread attachment with more elongated morphology compared to CD271- MSCs, signifying a different level of interaction between the cell populations and the scaffold surface. Following scaffold seeding PA-MSCs fully integrated into the scaffold surface and showed a stronger propensity for osteogenic differentiation as indicated by higher ALP activity than CD271-MSCs. Furthermore, A-W scaffold seeded uncultured non-enriched bone marrow mononuclear cells also demonstrated a higher proliferation rate and greater ALP activity compared to their CD271-enriched counterpart. CONCLUSIONS: Our findings suggest that CD271-positive enrichment of a population is not beneficial for osteogenesis when the cells are seeded on A-W scaffold. Furthermore, unselected heterogeneous MSCs or BMMNCs are more promising for A-W scaffold based bone regeneration. This leads to a conclusion of broader clinical relevance for tissue engineering: on the basis of our observations here the osteogenic potential observed in 2D cell culture should not be considered indicative of likely performance in a 3D scaffold based system, even when one of the cell populations is effectively a subset of the other.

15.
Oncotarget ; 5(10): 3184-96, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24833526

RESUMO

The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , TYK2 Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Humanos , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Transdução de Sinais/fisiologia , Análise Serial de Tecidos , Transfecção
16.
Int J Biochem Cell Biol ; 44(1): 132-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22037423

RESUMO

The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Leucemia Promielocítica Aguda/enzimologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Transfecção
17.
Annu Rev Microbiol ; 64: 585-610, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20533875

RESUMO

Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways. Although a yes/no decision appears to be sufficient for the light-sensing function in fungi, most species apply a number of different, wavelength-specific receptors. The core of all receptor types is a chromophore, a low-molecular-weight organic molecule, such as flavin, retinal, or linear tetrapyrrols for blue-, green-, or red-light sensing, respectively. Whereas the blue-light response in fungi is one of the best-studied light responses, all other light-sensing mechanisms are less well studied or largely unknown. The discovery of phytochrome in bacteria and fungi in recent years not only advanced the scientific field significantly, but also had great impact on our view of the evolution of phytochrome-like photoreceptors.


Assuntos
Fungos/fisiologia , Transdução de Sinal Luminoso , Luz , Fotorreceptores Microbianos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética
18.
Int J Surg Pathol ; 17(4): 323-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19029173

RESUMO

PURPOSE: Core biopsy is considered to be a highly accurate method for gaining preoperative diagnosis of breast cancer. The purpose of this study is to compare the results of core biopsy with those of the surgical excision specimen. EXPERIMENTAL DESIGN: A total of 567 core biopsies with subsequent surgical excision were performed. RESULTS: In 488 patients, invasive breast cancer was diagnosed in the preoperative biopsy and in 486 patients (99.6%) the surgical specimen showed identical results. In 160 of the 502 patients (32%) with invasive breast cancer, DCIS was found in the surgical specimen but was not diagnosed in the biopsy. Estrogen and progesterone receptor demonstrated a high rate of agreement, Her2/neu analysis showed a complete concordance in 54% of patients. CONCLUSIONS: Core biopsies allow diagnosis of invasive breast cancer with high accuracy. Levels of agreement have to be improved for the detection of DCIS and Her2/neu status.


Assuntos
Biópsia/métodos , Neoplasias da Mama/patologia , Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/cirurgia , Feminino , Humanos , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Reprodutibilidade dos Testes
19.
Mol Genet Genomics ; 281(1): 35-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18936976

RESUMO

Aspergillus nidulans senses red and blue-light and employs a phytochrome and a Neurospora crassa White Collar (WC) homologous system for light perception and transmits this information into developmental decisions. Under light conditions it undergoes asexual development and in the dark it develops sexually. The phytochrome FphA consists of a light sensory domain and a signal output domain, consisting of a histidine kinase and a response regulator domain. Previously it was shown that the phytochrome FphA directly interacts with the WC-2 homologue, LreB and another regulator, VeA. In this paper we mapped the interaction of FphA with LreB to the histidine kinase and the response regulator domain at the C-terminus in vivo using the bimolecular fluorescence complementation assay and in vitro by co-immunoprecipitation. In comparison, VeA interacted with FphA only at the histidine kinase domain. We present evidence that VeA occurs as a phosphorylated and a non-phosphorylated form in the cell. The phosphorylation status of the protein was independent of the light receptors FphA, LreB and the WC-1 homologue LreA.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fitocromo A/química , Fitocromo A/metabolismo , Fatores de Transcrição/metabolismo , Aspergillus nidulans/genética , Sequência de Bases , Sítios de Ligação/genética , Primers do DNA/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Fitocromo A/genética , Fitocromo B/química , Fitocromo B/genética , Fitocromo B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Fatores de Transcrição/genética
20.
Curr Biol ; 18(4): 255-9, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18291652

RESUMO

Light sensing is very important for organisms in all biological kingdoms to adapt to changing environmental conditions. It was discovered recently that plant-like phytochrome is involved in light sensing in the filamentous fungus Aspergillus nidulans[1]. Here, we show that phytochrome (FphA) is part of a protein complex containing LreA (WC-1) and LreB (WC-2) [2, 3], two central components of the Neurospora crassa blue-light-sensing system. We found that FphA represses sexual development and mycotoxin formation, whereas LreA and LreB stimulate both. Surprisingly, FphA interacted with LreB and with VeA, another regulator involved in light sensing and mycotoxin biosynthesis. LreB also interacted with LreA. All protein interactions occurred in the nucleus, despite cytoplasmic subfractions of the proteins. Whereas the FphA-VeA interaction was dependent on the presence of the linear tetrapyrrole in FphA, the interaction between FphA and LreB was chromophore independent. These results suggest that morphological and physiological differentiations in A. nidulans are mediated through a network consisting of FphA, LreA, LreB, and VeA acting in a large protein complex in the nucleus, sensing red and blue light.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/fisiologia , Luz , Fitocromo/fisiologia , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/metabolismo , Cor , Micotoxinas/biossíntese , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...